第三變壓器t02、第四變壓器t04和電容c16構(gòu)成一個(gè)匹配網(wǎng)絡(luò)。第三變壓器t02的原邊連接有電容c07,第四變壓器t04的原邊連接有電容c14。第三變壓器t02的副邊連接射頻輸出端rfout,第四變壓器t04的副邊接地。每個(gè)主體電路中的激勵(lì)放大器包括2個(gè)共源共柵放大器。如圖3所示,主體電路的激勵(lì)放大器中,nmos管mn01和nmos管mn03構(gòu)成一個(gè)共源共柵放大器,nmos管mn02和nmos管mn04構(gòu)成一個(gè)共源共柵放大器;第二主體電路的激勵(lì)放大器中,nmos管mn09和nmos管mn11構(gòu)成一個(gè)共源共柵放大器,nmos管mn10和nmos管mn12構(gòu)成一個(gè)共源共柵放大器。在主體電路中,激勵(lì)放大器源放大器的柵極與變壓器的副邊連接,激勵(lì)放大器柵放大器的漏極通過電容與功率放大器的輸入端連接。如圖3所示,nmos管mn01的柵極和nmos管mn02的柵極分別與變壓器t01的副邊連接,nmos管mn03的漏極連接電容c04,nmos管mn04的漏極連接電容c05。nmos管mn03的漏極和nmos管mn04的漏極為主體電路中激勵(lì)放大器的輸出端。在第二主體電路中,激勵(lì)放大器中源放大器的柵極與第二變壓器的副邊連接,激勵(lì)放大器柵放大器的漏極通過電容與功率放大器的輸入端連接。如圖3所示,nmos管mn09的柵極和nmos管mn10的柵極分別與變壓器t01的副邊連接。微波功率放大器的輸出功率主要有兩個(gè)指標(biāo):飽和輸出功率;ldB壓縮點(diǎn)輸出功率。廣東V段射頻功率放大器批發(fā)
驅(qū)動(dòng)放大電路和功率放大電路的電路結(jié)構(gòu)一樣,但二者對(duì)應(yīng)的各個(gè)器件的尺寸差異很大。相比較而言,功率放大電路更加注重輸出放大信號(hào)的效率,驅(qū)動(dòng)放大電路更加注重放大信號(hào)的增益控制。射頻功率放大器電路的高、中、低功率模式下,電路結(jié)構(gòu)和dc偏置都需要進(jìn)行切換,即,通過改變反饋電路中的開關(guān)、電壓偏置電路中的柵極電壓、電流偏置電路中的漏極電流、供電電壓vcc,以及使能可控衰減電路,協(xié)作實(shí)現(xiàn)以上功率模式,以及實(shí)現(xiàn)非負(fù)增益模式和負(fù)增益模式。圖2b是本發(fā)明實(shí)施例提供的射頻功率放大器電路的電路結(jié)構(gòu)示意圖,如圖2b所示,應(yīng)用于終端,包括:依次連接的可控衰減電路107、輸入匹配電路101、驅(qū)動(dòng)放大電路102、級(jí)間匹配電路103、功率放大電路105和輸出匹配電路106,與驅(qū)動(dòng)放大電路102跨接的反饋電路103;可控衰減電路107,用于根據(jù)終端中微處理器發(fā)送的模式控制信號(hào),實(shí)現(xiàn)射頻功率放大器電路的負(fù)增益模式與非負(fù)增益模式之間的切換;輸入匹配電路101,用于使可控衰減電路和驅(qū)動(dòng)放大電路之間阻抗匹配;驅(qū)動(dòng)放大電路102,用于放大輸入匹配電路輸出的信號(hào);反饋電路103,用于調(diào)節(jié)射頻功率放大器電路的增益;級(jí)間匹配電路104,用于使驅(qū)動(dòng)放大電路和功率放大電路之間阻抗匹配。海南寬帶射頻功率放大器報(bào)價(jià)由于微波固態(tài)功率放大器輸出功率較大,很小的功率泄漏都會(huì)對(duì)周圍電路的 工作產(chǎn)生較大影響。
將從2019年開始為GaN器件帶來巨大的市場(chǎng)機(jī)遇。相比現(xiàn)有的硅LDMOS(橫向雙擴(kuò)散金屬氧化物半導(dǎo)體技術(shù))和GaAs(砷化鎵)解決方案,GaN器件能夠提供下一代高頻電信網(wǎng)絡(luò)所需要的功率和效能。而且,GaN的寬帶性能也是實(shí)現(xiàn)多頻帶載波聚合等重要新技術(shù)的關(guān)鍵因素之一。GaNHEMT(高電子遷移率場(chǎng)效晶體管)已經(jīng)成為未來宏基站功率放大器的候選技術(shù)。由于LDMOS無法再支持更高的頻率,GaAs也不再是高功率應(yīng)用的優(yōu)方案,預(yù)計(jì)未來大部分6GHz以下宏網(wǎng)絡(luò)單元應(yīng)用都將采用GaN器件。5G網(wǎng)絡(luò)采用的頻段更高,穿透力與覆蓋范圍將比4G更差,因此小基站(smallcell)將在5G網(wǎng)絡(luò)建設(shè)中扮演很重要的角色。不過,由于小基站不需要如此高的功率,GaAs等現(xiàn)有技術(shù)仍有其優(yōu)勢(shì)。與此同時(shí),由于更高的頻率降低了每個(gè)基站的覆蓋率,因此需要應(yīng)用更多的晶體管,預(yù)計(jì)市場(chǎng)出貨量增長(zhǎng)速度將加快。預(yù)計(jì)到2025年GaN將主導(dǎo)RF功率器件市場(chǎng),搶占基于硅LDMOS技術(shù)的基站PA市場(chǎng)。根據(jù)Yole的數(shù)據(jù),2014年基站RF功率器件市場(chǎng)規(guī)模為11億美元,其中GaN占比11%,而橫向雙擴(kuò)散金屬氧化物半導(dǎo)體技術(shù)(LDMOS)占比88%。2017年,GaN市場(chǎng)份額預(yù)估增長(zhǎng)到了25%,并且預(yù)計(jì)將繼續(xù)保持增長(zhǎng)。預(yù)計(jì)到2025年GaN將主導(dǎo)RF功率器件市場(chǎng)。
因?yàn)檫@些特性,GaAs器件被應(yīng)用在無線通信、衛(wèi)星通訊、微波通信、雷達(dá)系統(tǒng)等領(lǐng)域,能夠在更高的頻率下工作,高達(dá)Ku波段。與LDMOS相比,擊穿電壓較低。通常由12V電源供電,由于電源電壓較低,使得器件阻抗較低,因此使得寬帶功率放大器的設(shè)計(jì)變得比較困難。GaAsMESFET是電磁兼容微波功率放大器設(shè)計(jì)的常用選擇,在80MHz到6GHz的頻率范圍內(nèi)的放大器中被采用。GaAs贗晶高電子遷移率晶體管(GaAspHEMT)GaAspHEMT是對(duì)高電子遷移率晶體管(HEMT)的一種改進(jìn)結(jié)構(gòu),也稱為贗調(diào)制摻雜異質(zhì)結(jié)場(chǎng)效應(yīng)晶體管(PMODFET),具有更高的電子面密度(約高2倍);同時(shí),這里的電子遷移率也較高(比GaAs中的高9%),因此PHEMT的性能更加優(yōu)越。PHEMT具有雙異質(zhì)結(jié)的結(jié)構(gòu),這不提高了器件閾值電壓的溫度穩(wěn)定性,而且也改善了器件的輸出伏安特性,使得器件具有更大的輸出電阻、更高的跨導(dǎo)、更大的電流處理能力以及更高的工作頻率、更低的噪聲等。采用這種材料可以實(shí)現(xiàn)頻率達(dá)40GHz,功率達(dá)幾W的功率放大器。在EMC領(lǐng)域,采用此種材料可以實(shí)現(xiàn),功率達(dá)200W的功率放大器。氮化鎵高電子遷移率晶體管(GaNHEMT)氮化鎵(GaN)HEMT是新一代的射頻功率晶體管技術(shù),與GaAs和Si基半導(dǎo)體技術(shù)相比。射頻功率放大器(RF PA)是發(fā)射系統(tǒng)中的主要部分。
使射頻功率放大器電路實(shí)現(xiàn)負(fù)增益模式??梢?,通過微控制器可控制第二mos管和第四mos管的漏級(jí)電流、第三mos管和第五mos管的門級(jí)電壓,進(jìn)而可調(diào)節(jié)驅(qū)動(dòng)放大電路和功率放大電路的放大倍數(shù),從而實(shí)現(xiàn)對(duì)射頻功率放大器電路的增益的線性調(diào)節(jié)。根據(jù)上述實(shí)施例可知,若需要使射頻功率放大器電路為非負(fù)增益模式,需要微控制器控制開關(guān)關(guān)斷,控制第二開關(guān)關(guān)斷,控制偏置電路使第二mos管的漏級(jí)電流和第三mos管的柵級(jí)電壓均變大,控制第二偏置電路使第四mos管的漏級(jí)電流和第五mos管的柵級(jí)電壓均變大。其中,第二開關(guān)關(guān)斷時(shí),反饋電路的放大系數(shù)af較大,有助于輸入信號(hào)的放大,偏置電路和第二偏置電路中漏極電流、門極電壓、漏級(jí)供電電壓較大,也有助于輸入信號(hào)的放大,開關(guān)關(guān)斷,則可控衰減電路被隔離開,對(duì)輸入信號(hào)的影響較小,通過這樣的控制,可以實(shí)現(xiàn)輸入信號(hào)的放大。當(dāng)射頻功率放大器電路的輸出功率(較大)確定后,微處理器可以進(jìn)一步得到其輸入功率和增益值,微處理器對(duì)輸入功率進(jìn)行調(diào)節(jié),控制電壓信號(hào)vgg,使開關(guān)關(guān)斷,控制第二開關(guān)關(guān)斷,通過控制偏置電路和第二偏置電路中的內(nèi)部電流源和內(nèi)部電壓源,并對(duì)漏級(jí)供電電壓vcc進(jìn)行控制,從而使偏置電路中漏級(jí)電流、柵級(jí)電壓變小。微波功率放大器(PA)是微波通信系統(tǒng)、廣播電視發(fā)射、雷達(dá)、導(dǎo)航系統(tǒng)的部件之一。廣西低頻射頻功率放大器批發(fā)
阻抗匹配,關(guān)系到功率放大器的穩(wěn)定性、增益;輸出功率、帶內(nèi)平坦度、噪聲、諧波、駐波、線性等一系列指標(biāo) 。廣東V段射頻功率放大器批發(fā)
實(shí)現(xiàn)射頻功率放大器電路處于負(fù)增益模式;其中,偏置電路與驅(qū)動(dòng)放大電路連接,第二偏置電路與功率放大電路連接。其中,如圖7所示,偏置電路1020包括:第二mos管t2、第三mos管t3、第六mos管t6、電流源ib、電壓源vg、第六電阻r6、第七電阻r7、第八電阻r8、第九電阻r9、第二電容c2、第七電容c7、第十二電容c12、第十三電容c13。第二mos管的漏極電流偏置電路由電流源、第六mos管、第六電阻、第七電阻和第十二電容按照?qǐng)D7所示連接而成。第六電阻、第七電阻和第十二電容組成的t型網(wǎng)絡(luò),可以起到隔離輸入信號(hào)的作用。第二mos管的寬長(zhǎng)比w/l是第六mos管的寬長(zhǎng)比的c(c遠(yuǎn)大于1)倍,因此第二mos管的漏極偏置電流近似為電流源的c倍,實(shí)現(xiàn)了電流放大。電流源存在多個(gè)可調(diào)節(jié)檔位,通過微處理器發(fā)出的第三控制信號(hào)和第四控制信號(hào),控制電流源檔位的切換,可切換第二mos管的漏極電流,從而調(diào)節(jié)驅(qū)動(dòng)放大電路的放大倍數(shù)。第三mos管t3的柵極電壓偏置電路由電壓源vg、第八電阻r8、第九電阻r9和第十三電容c13按照?qǐng)D7所示連接而成。第八電阻、第九電阻和第十三電容組成的t型網(wǎng)絡(luò),可起到隔離第三mos管柵極的射頻電壓擺幅的作用。電壓源存在多個(gè)可調(diào)節(jié)檔位。廣東V段射頻功率放大器批發(fā)
能訊通信科技(深圳)有限公司位于南頭街道馬家龍社區(qū)南山大道3186號(hào)明江大廈C501。公司業(yè)務(wù)涵蓋射頻功放,寬帶射頻功率放大器,射頻功放整機(jī),無人機(jī)干擾功放等,價(jià)格合理,品質(zhì)有保證。公司秉持誠信為本的經(jīng)營(yíng)理念,在電子元器件深耕多年,以技術(shù)為先導(dǎo),以自主產(chǎn)品為重點(diǎn),發(fā)揮人才優(yōu)勢(shì),打造電子元器件良好品牌。能訊通信秉承“客戶為尊、服務(wù)為榮、創(chuàng)意為先、技術(shù)為實(shí)”的經(jīng)營(yíng)理念,全力打造公司的重點(diǎn)競(jìng)爭(zhēng)力。