resultant - 計算兩個多項式的終結(jié)式bernoulli - Bernoulli 數(shù)和多項式bernstein - 用Bernstein多項式近似一個函數(shù)content, primpart - 一個多元的多項式的內(nèi)容和主部degree, ldegree - 一個多項式的比較高次方/比較低次方divide - 多項式的精確除法euler - Euler 數(shù)和多項式icontent - 多項式的整數(shù)部分interp - 多項式的插值prem, sprem - 多項式的pseudo 余數(shù)和稀疏pseudo 余數(shù)randpoly - 隨機多項式生成器spline - 計算自然樣條函數(shù)第8章 有理表達式8.0 有理表達式簡介在金融分析領(lǐng)域,科學計算軟件能夠處理大量的市場數(shù)據(jù),幫助投資者做出更加明智的決策。浦東新區(qū)挑選科學計算軟件24小時服務(wù)
JordanBlockMatrix 構(gòu)造約當塊矩陣JordanForm 將矩陣約化為約當型KroneckerProduct 構(gòu)造兩個矩陣的 Kronecker 張量積LeastSquares 方程的**小二乘解LinearSolve 求解線性方程組 A . x = bLUDecomposition 計算矩陣的 Cholesky,PLU 或 PLU1R 分解Map 將一個程序映射到一個表達式上,對矩陣和向量在原位置上進行處理MatrixAdd 計算兩個矩陣的線性組合VectorAdd 計算兩個向量的線性組合MatrixExponential 確定一個矩陣 A 的矩陣指數(shù) exp(A)MatrixFunction 確定方陣 A 的函數(shù) F(A)MatrixInverse 計算方陣的逆或矩陣的 Moore-Penrose 偽逆青浦區(qū)質(zhì)量科學計算軟件供應(yīng)云計算架構(gòu)的普及使得科學計算軟件能夠更加高效地利用計算資源,降低本地硬件的依賴。
SchurForm 將方陣約化為 Schur 型SingularValues 計算矩陣的奇異值SmithForm 將矩陣約化為 Smith 正規(guī)型StronglyConnectedBlocks 計算方陣的強連通塊SubMatrix 構(gòu)造矩陣的子矩陣SubVector 構(gòu)造向量的子向量SylvesterMatrix 構(gòu)造兩個多項式的 Sylvester 矩陣ToeplitzMatrix 構(gòu)造 Toeplitz 矩陣Trace 計算方陣的跡Transpose轉(zhuǎn)置矩陣HermitianTranspose 共軛轉(zhuǎn)置矩陣TridiagonalForm 將方陣約化為三對角型UnitVector 構(gòu)造單位向量VandermondeMatrix 構(gòu)造一個 Vandermonde 矩陣VectorAngle 計算兩個向量的夾角
第12章級數(shù)12.1 冪級數(shù)的階數(shù)Order - 階數(shù)項函數(shù)order - 確定級數(shù)的截斷階數(shù)12.2 常見級數(shù)展開series - 一般的級數(shù)展開taylor - Taylor 級數(shù)展開mtaylor - 多元Taylor級數(shù)展開poisson - Poisson級數(shù)展開.26812.3 其它級數(shù)eulermac - Euler-Maclaurin求和piecewise - 分段連續(xù)函數(shù)asympt - 漸進展開第13章 特殊函數(shù)AiryAi, AiryBi - Airy 波動函數(shù)AiryAiZeros, AiryBiZeros - Airy函數(shù)的實數(shù)零點AngerJ, WeberE - Anger函數(shù)和Weber函數(shù)BesselI, HankelH1, … - Bessel函數(shù)和Hankel函數(shù)BesselJZeros, … - Bessel函數(shù)實數(shù)零點人工智能與機器學習集成:AI技術(shù)的集成使得科學計算軟件具備更強的自主決策能力。
Octave的**由一組內(nèi)置的(built-in)矩陣運算語言(如四則運算)和可加載函數(shù)(Loadable Function)組成(例如求矩陣逆inv),其余能在**語言之上實現(xiàn)而且性能開銷不會***增加的函數(shù)調(diào)用則一般以O(shè)ctave腳本的形式存在(例如求解方程組的fsolve函數(shù))。Octave解釋器會自動處理各種不同類型的調(diào)用。Octave支持數(shù)據(jù)建構(gòu),也支持基本的面向?qū)ο缶幊?,但通常仍把它當作面向過程的程序設(shè)計語言來看待。它的語法基本上與Matlab一致,嚴謹編寫的代碼應(yīng)同時可在Matlab及Octave運行。但若調(diào)用了Matlab工具包,則一般不能直接在Octave上運行,因為Octave附帶的工具包與Matlab并不兼容。Octave:與MATLAB兼容的開源軟件,適合進行數(shù)值計算和算法開發(fā)。黃浦區(qū)定制科學計算軟件比較
大數(shù)據(jù)技術(shù)的整合使得軟件能夠處理更加復(fù)雜、龐大的數(shù)據(jù)集,提高計算的準確性和效率。浦東新區(qū)挑選科學計算軟件24小時服務(wù)
exp - 指數(shù)函數(shù)sum - 確定求和不確定求和sqrt - 計算平方根算術(shù)運算符+, -, *, /, ^add, mul - 值序列的加法/乘法2.2 三角函數(shù)arcsin, arcsinh, . - 反三角函數(shù)/反雙曲函數(shù)sin, sinh, . - 三角函數(shù)/雙曲函數(shù)2.3 LOGARITHMS 函數(shù)dilog - Dilogarithm 函數(shù)ln, log, log10 - 自然對數(shù)/一般對數(shù),常用對數(shù)2.4 類型轉(zhuǎn)換convert/`+`,convert/`*` - 轉(zhuǎn)換為求和/乘積convert/hypergeom - 將求和轉(zhuǎn)換為超越函數(shù)convert/degrees - 將弧度轉(zhuǎn)換為度convert/expsincos - 將trig 函數(shù)轉(zhuǎn)換為exp, sin, cosconvert/Ei - 轉(zhuǎn)換為指數(shù)積分浦東新區(qū)挑選科學計算軟件24小時服務(wù)
甘茨軟件科技(上海)有限公司是一家有著先進的發(fā)展理念,先進的管理經(jīng)驗,在發(fā)展過程中不斷完善自己,要求自己,不斷創(chuàng)新,時刻準備著迎接更多挑戰(zhàn)的活力公司,在上海市等地區(qū)的數(shù)碼、電腦中匯聚了大量的人脈以及**,在業(yè)界也收獲了很多良好的評價,這些都源自于自身的努力和大家共同進步的結(jié)果,這些評價對我們而言是比較好的前進動力,也促使我們在以后的道路上保持奮發(fā)圖強、一往無前的進取創(chuàng)新精神,努力把公司發(fā)展戰(zhàn)略推向一個新高度,在全體員工共同努力之下,全力拼搏將共同甘茨軟件供應(yīng)和您一起攜手走向更好的未來,創(chuàng)造更有價值的產(chǎn)品,我們將以更好的狀態(tài),更認真的態(tài)度,更飽滿的精力去創(chuàng)造,去拼搏,去努力,讓我們一起更好更快的成長!