全自動金相切割機的切割精度與穩(wěn)定性分析-全自動金相切割機
全自動顯微維氏硬度計在電子元器件檢測中的重要作用
全自動顯微維氏硬度計:提高材料質(zhì)量評估的關(guān)鍵工具
全自動維氏硬度計對現(xiàn)代制造業(yè)的影響?-全自動維氏硬度計
跨越傳統(tǒng)界限:全自動顯微維氏硬度計在復(fù)合材料檢測中的應(yīng)用探索
從原理到實踐:深入了解全自動顯微維氏硬度計的工作原理
全自動金相切割機在半導(dǎo)體行業(yè)的應(yīng)用前景-全自動金相切割機
全自動金相切割機的工作原理及優(yōu)勢解析-全自動金相切割機
全自動洛氏硬度計在材料科學(xué)研究中的應(yīng)用?-全自動洛氏硬度計
全自動維氏硬度計在我國市場的發(fā)展現(xiàn)狀及展望-全自動維氏硬度計
現(xiàn)代電力系統(tǒng)中發(fā)電機的單機容量越大型發(fā)電機在電力生產(chǎn)中處于主力位置,同時大型發(fā)電機造價昂貴,結(jié)構(gòu)復(fù)雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國今后很長一段時間內(nèi)的缺電、用電緊張的狀況而言,發(fā)電機的年運行小時數(shù)目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監(jiān)測與診斷,做到早期預(yù)警以防止事故的發(fā)生或擴大具有重要的現(xiàn)實意義。通常對發(fā)電機的“監(jiān)測”與“診斷”在內(nèi)容上并無明確的劃分界限,可以說監(jiān)測數(shù)據(jù)和結(jié)果即為診斷的依據(jù)。監(jiān)測利用各種傳感器在電機運行時對電機的狀態(tài)提取相關(guān)數(shù)據(jù)。故障診斷使用計算機及其相應(yīng)智能軟件,根據(jù)傳感器提供的信息,對故障進行分類、定位,確定故障的嚴重程度并提出處理意見。因此狀態(tài)監(jiān)測和故障診斷是一項工作的兩個部分,前者是后者的基礎(chǔ),后者是前者的分析與綜合。電機狀態(tài)監(jiān)測技術(shù)可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設(shè)備內(nèi)部實際的運行狀況,合理安排檢修工作,實現(xiàn)所謂“預(yù)知”維修。這樣既可避免由于設(shè)備突然損壞,停止運行帶來的損失,又可充分發(fā)揮設(shè)備的作用。在監(jiān)測過程中,我們需要密切關(guān)注數(shù)據(jù)的變化情況。寧波狀態(tài)監(jiān)測數(shù)據(jù)
從整體的網(wǎng)絡(luò)架構(gòu)來看,智能振動噪聲監(jiān)診子系統(tǒng)利用安裝在設(shè)備上傳感器節(jié)點獲取設(shè)備的健康狀態(tài)監(jiān)測信號和運行參數(shù)數(shù)據(jù),經(jīng)網(wǎng)絡(luò)層集中上傳至設(shè)備健康監(jiān)測物聯(lián)網(wǎng)綜合管理平臺,實現(xiàn)數(shù)據(jù)傳輸。應(yīng)用層實現(xiàn)監(jiān)測信號的分析?故障特征提取?故障診斷及預(yù)測功能,實現(xiàn)智能化管理?應(yīng)用和服務(wù)。設(shè)備健康監(jiān)測物聯(lián)網(wǎng)綜合管理平臺具有強大的數(shù)據(jù)采集分析處理?數(shù)據(jù)可視?設(shè)備運維?故障診斷?故障報警等功能。通過實時監(jiān)測查看?統(tǒng)計?追溯,實現(xiàn)對其管轄設(shè)備的實時監(jiān)測和運行維護,基于運行信息和檢修信息?自動生成設(shè)備管理報表,實現(xiàn)設(shè)備可靠性?故障數(shù)據(jù)?更換備件等信息統(tǒng)計,為維修方案提供依據(jù)。專業(yè)監(jiān)測數(shù)據(jù)監(jiān)測結(jié)果的分析可以幫助我們了解市場的競爭格局和市場份額。
智能船舶是指基于“網(wǎng)絡(luò)平臺”的信息技術(shù)應(yīng)用,以“大數(shù)據(jù)”為基礎(chǔ),通過數(shù)據(jù)分析和數(shù)據(jù)處理,實現(xiàn)運行船舶的智能感知、判斷分析和決策控制,從技術(shù)、設(shè)備、管理等多個層面保證船舶航行的安全和效率,大幅減少甚至杜絕人為或外部因素造成的各種事故。其主要目標(biāo)就是安全、經(jīng)濟、高效、環(huán)保。而智能機艙是通過綜合狀態(tài)監(jiān)測系統(tǒng)所獲得的設(shè)備信息和數(shù)據(jù),實現(xiàn)對機艙內(nèi)機械設(shè)備的運行狀態(tài)、健康狀況進行分析和評估,進而完成設(shè)備操作輔助決策和維護保養(yǎng)計劃的綜合管控系統(tǒng)。它能及時地、準(zhǔn)確地對多種異常狀態(tài)或故障狀態(tài)做出診斷,預(yù)防或消除故障,把故障損失降低到較低水平,同時對設(shè)備的運行進行必要的決策支持,提高設(shè)備運行的可靠性、安全性和有效性,也能確定設(shè)備的良好維護時間,降低設(shè)備全壽命周期費用,增加設(shè)備的穩(wěn)定性。近日,盈蓓德成功交付了InsightlO智能監(jiān)測系統(tǒng),就是智能船舶中的智能機艙系統(tǒng),這一創(chuàng)新技術(shù)將為船舶行業(yè)帶來全新的智能化管理體驗,標(biāo)志著船舶行業(yè)智能化新篇章的開啟。InsightlO智能監(jiān)測系統(tǒng)是盈蓓德經(jīng)過長期研發(fā)和測試的成果,該系統(tǒng)能夠?qū)崟r監(jiān)測機艙設(shè)備的各項運行數(shù)據(jù)。
在工業(yè)現(xiàn)場的預(yù)防性維護應(yīng)用中,振動是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機械設(shè)備的所有故障中,振動問題出現(xiàn)的概率比較高;另一方面,振動信號包含了豐富的機械及運行的狀態(tài)信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監(jiān)測和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護需要重點監(jiān)控振動量的變化。其預(yù)測性診斷技術(shù)對于制造業(yè)、風(fēng)電等的行業(yè)的運維具有非常重大的意義。通過設(shè)備振動等狀態(tài)的預(yù)測性維護,可以及時發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對于一些不是因為設(shè)備問題而存在的固有振動,振動強度的不必要增加會對部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動隔離技術(shù)來解決和干預(yù),有效抑制振動和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。監(jiān)測結(jié)果的比較可以幫助我們評估不同地區(qū)的市場需求和潛力。
作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對于終端用來說,關(guān)于電機維護的主要是電氣班組的設(shè)備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經(jīng)銷商來說,主要是電機售后服務(wù)工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實現(xiàn)電機的預(yù)測性維護,但問題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術(shù)成本高。工業(yè)場景設(shè)備類型多,運行工況復(fù)雜,預(yù)測性維護算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機理、機器學(xué)習(xí),技術(shù)要求很高。3)時間成本高。預(yù)測性維護要實現(xiàn),前期需要大量歷史數(shù)據(jù)支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預(yù)測性維護的預(yù)測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!工業(yè)人員安全的監(jiān)測檢測是保障工人生命安全的必要措施,可以預(yù)防事故的發(fā)生。南京非標(biāo)監(jiān)測技術(shù)
工業(yè)監(jiān)測系統(tǒng)可以預(yù)測設(shè)備的故障并提前進行維修。寧波狀態(tài)監(jiān)測數(shù)據(jù)
針對刀具磨損狀態(tài)在實際生產(chǎn)加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術(shù)獲取機床內(nèi)部數(shù)據(jù),對當(dāng)前的刀具磨損狀態(tài)進行識別的方法。通過采集機床內(nèi)部實時數(shù)據(jù)并將其與實際加工情景緊密結(jié)合,能直接反映當(dāng)前加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測模型,模型在訓(xùn)練集和在線驗證試驗中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數(shù)試驗,考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當(dāng)前場景,及時匹配相應(yīng)的預(yù)測模型即可。②本研究中的模型是一個固定的模型。今后需要根據(jù)實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測效果。寧波狀態(tài)監(jiān)測數(shù)據(jù)