借力浙江 “雙碳” 新政 晶映照明節(jié)能改造推動企業(yè)綠色轉型
山東“五段式”電價來襲!晶映節(jié)能燈,省電90%的秘密武器!
晶映照明助力重慶渝北區(qū)冉家壩小區(qū)車庫煥新顏
停車場改造的隱藏痛點:從 “全亮模式” 到晶映T8的智能升級
晶映T8:重新定義停車場節(jié)能改造新標準
杭州六小龍后,晶映遙遙 “領銜” 公共區(qū)域節(jié)能照明
晶映節(jié)能照明:推進公共區(qū)域節(jié)能照明革新之路
晶映:2025年停車場照明節(jié)能改造新趨勢
晶映助力商業(yè)照明 企業(yè)降本增效新引擎
晶映節(jié)能賦能重慶解放碑:地下停車場照明革新,測電先行
隨著AI的快速發(fā)展,對應的軟硬件也得到了快速的普及,蘋果公司已經推出了新一代的具有AI功能的系列產品,Intel也推出了具有AI能力的新一代芯片。無論是無人機用吊艙產品還是邊海防用轉臺產品,如果前端沒有具有AI能力的圖像處理板卡或智能跟蹤設備,沒有高性能的AI算法,很難在激烈的競爭中獲得優(yōu)勢。特別是針對一些特定場景或特定目標的檢測跟蹤性能提升,圖像算法工程師的壓力與日俱增。按照傳統(tǒng)的做法,需要經過數據采集、人工標注、模型訓練、模型部署、效果評估等流程。數據是人工智能的學習資源。成都智慧監(jiān)獄AI智能視覺識別
在通常情況下,工業(yè)數據是海量、多樣的,并且經常充斥著錯誤或不相關的信息,例如停機日志。如果沒有指導,數據科學家通常會浪費寶貴的時間和資源來篩選無關的復雜性,浪費寶貴的時間,并經常產生誤導性的模型。這就是為什么人工(包括工藝工程師和操作人員)在為準確模型準備數據方面至關重要,他們的工藝知識有助于確定正確的數據和相關時間段。準備好準確的模型后,可以采用慧視光電推出的AI自動圖像標注軟件SpeedDP來幫助進行AI深度學習,讓AI更加聰明,進而更好地進行數據分析,云南圖像識別AI智能供應商用SpeedDP進行圖像標注可以省下許多人力成本。
無人機作為高空巡邏偵查的輔助平臺,憑借其靈活、廣闊的視野,能夠為治安巡邏提供更多的地面信息,有效彌補視野盲區(qū),實現三位一體防控。例如公安可以通過無人機開展“空中喊話”,將反詐、防溺水、消防安全等知識“空投”給市民,開展“空中喊話”。在高空喊話的同時,無人機還將現場巡檢畫面實時傳回情指中心聯合指揮大廳,民警將巡航檢查發(fā)現的小區(qū)消防通道堵塞、居民樓飛線充電等隱患,迅速派發(fā)至屬地職能單位予以整改。這種模式下,需要無人機搭載吊艙來實現相應功能。成都慧視推出的VIZ-GT07D三軸雙光微型吊艙就是一個不錯的選擇。這款吊艙是一款微型的三軸雙光慣性穩(wěn)定吊艙,集成了640×512高分辨率紅外相機、1300萬像素的全高清可見光相機和陀螺穩(wěn)定平臺,能夠實現夜間和白天24小時的無人機巡邏工作。
隨著技術的不斷迭代發(fā)展,人工智能應用已潛移默化的深入到人們的日常生活中,智能圖片搜索、人臉識別、指紋識別、掃碼支付、視覺工業(yè)機器人、輔助駕駛等圖像視頻識別產品正在深刻改變著傳統(tǒng)行業(yè)。而這些功能實現的背后,都要依賴于人工智能數據的標注。但是如果遇到數據量龐大的標注需求,傳統(tǒng)的人工標注就顯得費時費力,會影響整個項目的進度?;垡昐peedDP是針對AI零基礎用戶的低門檻AI開發(fā)平臺,提供從數據標注、模型訓練、測試驗證到RockChip嵌入式硬件平臺模型部署的可視化AI開發(fā)功能。SpeedDP提供豐富的算法參數設置接口,滿足不同用戶業(yè)務場景的定制化需求。此外,慧視SpeedDP開發(fā)平臺支持本地化服務器部署,數據敏感的用戶也無需擔心數據信息泄露的問題。SpeedDP能夠替代傳統(tǒng)的人工標注師。
部署機器學習模型,也稱為模型部署,簡單來說就是將機器學習模型集成到現有的生產環(huán)境中,在該環(huán)境中,模型可以接受輸入并返回輸出。部署模型的目的是讓其他人(無論是用戶、管理人員還是其他系統(tǒng))可以使用訓練有素的機器學習模型進行預測。模型部署與機器學習系統(tǒng)架構密切相關,機器學習系統(tǒng)架構是指系統(tǒng)內軟件組件的排列和交互,以實現預定義的目標。成都慧視推出的AI自動圖像標注軟件SpeedDP也是這樣,通過正確的模型部署后方能進行正確的AI模型訓練,讓AI更加智能。人工智能和機器學習為建筑行業(yè)轉型提供了巨大潛力。云南AI智能算法分析軟件
SpeedDP整體安全性很高。成都智慧監(jiān)獄AI智能視覺識別
圖像識別方法可以分為兩大類,模型方法和搜索方法。模型方法是在業(yè)界研究和使用比較多的方法。模型的方法是試圖通過一些已知“標簽”的圖像,通過機器學習的各種方法來學習一個描述這些標簽的“模型”,從而,對于一個新的未知圖像,經過這個模型判斷出其應該具有的標簽?;谒阉鞯姆椒ㄊ窃诖髷祿r代才出現的方法,其基礎是將已知標簽的圖像數據建成一個可以進行高效率檢索的數據庫,稱為圖像索引。通常需要大量的圖像來建索引,但圖像的標簽可以有少量的噪聲。那么,對一副待測圖像,我們到這個數據庫中去找與其相同或者相似的若干圖像,然后綜合這些圖像的標簽來預測待測圖像的標簽。成都智慧監(jiān)獄AI智能視覺識別